S sareen New member Joined Oct 9, 2009 Messages 24 Oct 9, 2009 #1 Use integration by parts to prove the reduction formula: ?(lnx)^n dx= x(lnx)^n - n?(lnx)^n-1 dx Then use the above to evaluate the integral: ? (lnx)^3 dx
Use integration by parts to prove the reduction formula: ?(lnx)^n dx= x(lnx)^n - n?(lnx)^n-1 dx Then use the above to evaluate the integral: ? (lnx)^3 dx
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Oct 9, 2009 #2 Hello, sareen! Use integration by parts to prove the reduction formula: . . \(\displaystyle \int(\ln x)^n\,dx \;=\; x(\ln x)^n - n\int(\ln x)^{n-1}dx\) Click to expand... \(\displaystyle \text{Let: }\;\begin{array}{ccccccc}u &=& (\ln x)^n & & dv &=& dx \\ du &=& n(\ln x)^{n-1}\frac{dx}{x} && v &=& x \end{array}\) \(\displaystyle \text{Then: }\;\int\underbrace{(\ln x)^x}_u\,\underbrace{dx}_{dv} \;=\;\underbrace{(\ln x)^n}_u\cdot \underbrace{x}_v - \int\underbrace{x}_v\cdot\underbrace{ n(\ln x)^{n-1}\tfrac{dx}{x}}_{du}\) . . . . . . . . . . . . . . . .\(\displaystyle =\; x(\ln x)^n - n\int (\ln x)^{n-1}dx\) Then use the above to evaluate the integral: . . \(\displaystyle \int (\ln x)^3 dx\) Click to expand... \(\displaystyle \int(\ln x)^3dx \;=\; x(\ln)^3 - 3\underbrace{\int(\ln x)^2dx}\) . . . . . . . . \(\displaystyle = \; x(\ln x)^3 - 3\overbrace{ \bigg[x(\ln x)^2 - 2\!\!\int \ln x\,dx\bigg]}^{\searrow\quad} + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\underbrace{\int \ln x\,dx}_{\quad\searrow} + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\overbrace{\bigg[x\ln x - \int dx\bigg]} + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\bigg[x\ln x - x\bigg] + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6x\ln x - 6x + C\)
Hello, sareen! Use integration by parts to prove the reduction formula: . . \(\displaystyle \int(\ln x)^n\,dx \;=\; x(\ln x)^n - n\int(\ln x)^{n-1}dx\) Click to expand... \(\displaystyle \text{Let: }\;\begin{array}{ccccccc}u &=& (\ln x)^n & & dv &=& dx \\ du &=& n(\ln x)^{n-1}\frac{dx}{x} && v &=& x \end{array}\) \(\displaystyle \text{Then: }\;\int\underbrace{(\ln x)^x}_u\,\underbrace{dx}_{dv} \;=\;\underbrace{(\ln x)^n}_u\cdot \underbrace{x}_v - \int\underbrace{x}_v\cdot\underbrace{ n(\ln x)^{n-1}\tfrac{dx}{x}}_{du}\) . . . . . . . . . . . . . . . .\(\displaystyle =\; x(\ln x)^n - n\int (\ln x)^{n-1}dx\) Then use the above to evaluate the integral: . . \(\displaystyle \int (\ln x)^3 dx\) Click to expand... \(\displaystyle \int(\ln x)^3dx \;=\; x(\ln)^3 - 3\underbrace{\int(\ln x)^2dx}\) . . . . . . . . \(\displaystyle = \; x(\ln x)^3 - 3\overbrace{ \bigg[x(\ln x)^2 - 2\!\!\int \ln x\,dx\bigg]}^{\searrow\quad} + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\underbrace{\int \ln x\,dx}_{\quad\searrow} + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\overbrace{\bigg[x\ln x - \int dx\bigg]} + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6\bigg[x\ln x - x\bigg] + C\) . . . . . . . . \(\displaystyle =\; x(\ln x)^3 - 3x(\ln x)^2 + 6x\ln x - 6x + C\)
S sareen New member Joined Oct 9, 2009 Messages 24 Oct 9, 2009 #3 thanks a lot! It really cleared out all of my questions