Does this diverge or converge based on root test?
If \(\displaystyle L < 1\) then it converges, if \(\displaystyle L > 1\) then it diverges. If \(\displaystyle L = 1\) then the test cannot provide the needed info.
Summation symbol with \(\displaystyle \infty\) on top of the symbol and \(\displaystyle n = 1\) on the bottom \(\displaystyle \dfrac{n^{n - 1}}{2^{3+n}}\) (line from online video I copied)
\(\displaystyle \lim x \rightarrow \infty \dfrac{n^{n - 1}}{2^{3+n}}\) - (line from online video I copied)
\(\displaystyle \lim x \rightarrow \infty [\dfrac{n^{n - 1}}{2^{3+n}}]^{ln}\) (line from online video I copied)
\(\displaystyle \lim x \rightarrow \infty \dfrac{(n^{n - 1})^{ln}}{(2^{3+n})^{ln}}\)
What next? I know the \(\displaystyle \ln\) of 1 is 0
Is \(\displaystyle \lim x \rightarrow \infty [\dfrac{n^{n - 1}}{2^{3+n}}]^{ln}\) the same as \(\displaystyle \lim x \rightarrow \infty \ln[\dfrac{n^{n - 1}}{2^{3+n}}]\) which would lead to
\(\displaystyle \lim x \rightarrow \infty \dfrac{\ln (n^{n - 1})}{\ln (2^{3+n})}\)
If \(\displaystyle L < 1\) then it converges, if \(\displaystyle L > 1\) then it diverges. If \(\displaystyle L = 1\) then the test cannot provide the needed info.
Summation symbol with \(\displaystyle \infty\) on top of the symbol and \(\displaystyle n = 1\) on the bottom \(\displaystyle \dfrac{n^{n - 1}}{2^{3+n}}\) (line from online video I copied)
\(\displaystyle \lim x \rightarrow \infty \dfrac{n^{n - 1}}{2^{3+n}}\) - (line from online video I copied)
\(\displaystyle \lim x \rightarrow \infty [\dfrac{n^{n - 1}}{2^{3+n}}]^{ln}\) (line from online video I copied)
\(\displaystyle \lim x \rightarrow \infty \dfrac{(n^{n - 1})^{ln}}{(2^{3+n})^{ln}}\)
What next? I know the \(\displaystyle \ln\) of 1 is 0
Is \(\displaystyle \lim x \rightarrow \infty [\dfrac{n^{n - 1}}{2^{3+n}}]^{ln}\) the same as \(\displaystyle \lim x \rightarrow \infty \ln[\dfrac{n^{n - 1}}{2^{3+n}}]\) which would lead to
\(\displaystyle \lim x \rightarrow \infty \dfrac{\ln (n^{n - 1})}{\ln (2^{3+n})}\)
Last edited: