Root test for divergence or convergence of a series.
If \(\displaystyle L < 0\) then it converges
If \(\displaystyle L >0\) then it diverges
If \(\displaystyle L = 1\) then the problem does not provide us with the needed info.
Summation sign with \(\displaystyle \infty\) on top and \(\displaystyle n = 1\) on the bottom \(\displaystyle \lim n \rightarrow \infty \dfrac{e^{3n}}{n^{n}}\)
\(\displaystyle \lim n \rightarrow \infty \dfrac{e^{3n}}{n^{n}}\)
\(\displaystyle \lim n \rightarrow \infty [\dfrac{e^{3n}}{n^{n}}]^{ln}\)
\(\displaystyle \lim n \rightarrow \infty \dfrac{e^{3}}{n}\)
How did this line become like this?
\(\displaystyle \lim n \rightarrow \infty\dfrac{\dfrac{e^{3}}{n}}{\dfrac{n}{n}}\)
\(\displaystyle \lim n \rightarrow \infty\dfrac{\dfrac{e^{3}}{\infty}}{1}\)
\(\displaystyle \lim n \rightarrow \infty\dfrac{0}{1} = 0\)
\(\displaystyle 0 < 1\) so it converges
If \(\displaystyle L < 0\) then it converges
If \(\displaystyle L >0\) then it diverges
If \(\displaystyle L = 1\) then the problem does not provide us with the needed info.
Summation sign with \(\displaystyle \infty\) on top and \(\displaystyle n = 1\) on the bottom \(\displaystyle \lim n \rightarrow \infty \dfrac{e^{3n}}{n^{n}}\)
\(\displaystyle \lim n \rightarrow \infty \dfrac{e^{3n}}{n^{n}}\)
\(\displaystyle \lim n \rightarrow \infty [\dfrac{e^{3n}}{n^{n}}]^{ln}\)
\(\displaystyle \lim n \rightarrow \infty \dfrac{e^{3}}{n}\)
\(\displaystyle \lim n \rightarrow \infty\dfrac{\dfrac{e^{3}}{n}}{\dfrac{n}{n}}\)
\(\displaystyle \lim n \rightarrow \infty\dfrac{\dfrac{e^{3}}{\infty}}{1}\)
\(\displaystyle \lim n \rightarrow \infty\dfrac{0}{1} = 0\)
\(\displaystyle 0 < 1\) so it converges
Last edited: