SEcond order non-homogeneous eqn

KLS2111

New member
Joined
Mar 8, 2007
Messages
22
Hello,
I am working on solving a second order non-homogeneous eqn.

The equation is d^2 x + 3 dx - 4x = tan(t)
dt^2 dt with x(0)=2 x'(0)=-1 Find x(1)

I found x to be 1/5 [ e^(-t) Integral e^ (t) tan t dt - e^(-4t) integral e^(4t) tan t dt

The issue I'm having is actually integrating this to plug in zero. When I integrate i ended up with
1/5[ e^t ln|sec t| - int ln |sec t| dt - e^4t ln|sect|- integ ln|sect| dt

Any guidance would be greatly appreciated
 
Is this it?:

x+3x4x=tan(t),   x(0)=1,   x(0)=2\displaystyle x''+3x'-4x=tan(t), \;\ x'(0)=-1, \;\ x(0)=2

Find x(1)\displaystyle \text{Find x(1)}.

From m2+3m4=(m+4)(m1)=0\displaystyle m^{2}+3m-4=(m+4)(m-1)=0

m=4,   m=1\displaystyle m=-4, \;\ m=1

yc=C1e4t+C2et\displaystyle y_{c}=C_{1}e^{-4t}+C_{2}e^{t}

Using Variation of Parameters:

W=4t\displaystyle W=4t

W1=ttan(t)\displaystyle W_{1}=-t\cdot tan(t)

W2=4ttan(t)\displaystyle W_{2}=-4t\cdot tan(t)

u1=W1W=tan(t)4\displaystyle u'_{1}=\frac{W_{1}}{W}=\frac{-tan(t)}{4}

u2=tan(t)\displaystyle u'_{2}=-tan(t)

Integrating gives:

u1=ln(cos(t))4\displaystyle u_{1}=\frac{ln(cos(t))}{4}

u2=ln(cos(t))\displaystyle u_{2}=ln(cos(t))

e4tln(cos(t))4+etln(cos(t))\displaystyle \frac{e^{-4t}ln(cos(t))}{4}+e^{t}ln(cos(t))

Using the initial conditions, we get a general solution yc+yp=y\displaystyle y_{c}+y_{p}=y

y=35e4t+75et+e4tln(cos(t))4+etln(cos(t))\displaystyle y=\frac{3}{5}e^{-4t}+\frac{7}{5}e^{t}+\frac{e^{-4t}ln(cos(t))}{4}+e^{t}ln(cos(t))

It would appear you are trying to integrate what was already integrated. It is tough to integrate ln(cos(t)).

Actually, this is the result after integrating.

Let t=1 to find y(1).
 
Top