Is this right? How would you graph the general solution?
dxdy=6x−9y+1
dxdy(dx)=6x−9y+1(dx)
dy=6x−9y+1dx
(y+11)dy=6x−9y+1(y+11)dx
y+11dy=6x−91dx
∫y+11dy=∫6x+91dx
ln(y+1)+Ca=61ln(6x+9)+Cb
ln(y+1)+Ca−Ca=61ln(6x+9)+Cb−Ca
ln(y+1)=61ln(6x+9)+C
eln(y+1)=e61ln(6x+9)+C
y+1=61(6x+9)(ec)
ec=c1
y+1=61(6x+9)(c1)
y+1=x+23(c1)
y+1−1=x+23(c1)−1
y=x+23(c1)−1 is the general solution.
dxdy=6x−9y+1
dxdy(dx)=6x−9y+1(dx)
dy=6x−9y+1dx
(y+11)dy=6x−9y+1(y+11)dx
y+11dy=6x−91dx
∫y+11dy=∫6x+91dx
ln(y+1)+Ca=61ln(6x+9)+Cb
ln(y+1)+Ca−Ca=61ln(6x+9)+Cb−Ca
ln(y+1)=61ln(6x+9)+C
eln(y+1)=e61ln(6x+9)+C
y+1=61(6x+9)(ec)
ec=c1
y+1=61(6x+9)(c1)
y+1=x+23(c1)
y+1−1=x+23(c1)−1
y=x+23(c1)−1 is the general solution.
Last edited: