Does the following sequence converge or diverge. and to what value?
\(\displaystyle a_{n} = \dfrac{1 - 2n}{1 + 2n} \)
\(\displaystyle \lim n \rightarrow \infty [\dfrac{1 - 2n}{1 + 2n} ] \)
\(\displaystyle \lim n \rightarrow \infty [\dfrac{1 - 2(\infty)}{1 + 2(\infty)} ] = \) indeterminate
\(\displaystyle \lim n \rightarrow \infty [\dfrac{1 - 2}{1 + 2} ] = \dfrac{-1}{3} \) The book answer is \(\displaystyle -1\)
\(\displaystyle a_{n} = \dfrac{1 - 2n}{1 + 2n} \)
\(\displaystyle \lim n \rightarrow \infty [\dfrac{1 - 2n}{1 + 2n} ] \)
\(\displaystyle \lim n \rightarrow \infty [\dfrac{1 - 2(\infty)}{1 + 2(\infty)} ] = \) indeterminate
\(\displaystyle \lim n \rightarrow \infty [\dfrac{1 - 2}{1 + 2} ] = \dfrac{-1}{3} \) The book answer is \(\displaystyle -1\)
Last edited: