2 21385 New member Joined Dec 18, 2006 Messages 7 Dec 18, 2006 #1 solve (2000! / 1000!) = k(1 × 3 × 5 × 7 × ... × 1999) for k Solve for k, given that (2000! / 1000!) = k(1 × 3 × 5 × 7 × ... × 1999)
solve (2000! / 1000!) = k(1 × 3 × 5 × 7 × ... × 1999) for k Solve for k, given that (2000! / 1000!) = k(1 × 3 × 5 × 7 × ... × 1999)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Dec 19, 2006 #2 Re: Another question Hello, 21385! A tricky problem . . . I had to baby-talk my way through it. Solve for \(\displaystyle k:\;\frac{2000!}{1000!}\:=\:k(1\cdot3\cdot5\cdot7\,\cdots\,1999)\) Click to expand... We have: \(\displaystyle \1000!)k\;=\;\frac{2000!}{1\cdot3\cdot5\,\cdots\,1999}\) On the right side, all the odd factors cancel out. . . and we have: \(\displaystyle \1000!)k \;=\;2\cdot4\cdot6\,\cdots\,2000\) Then: \(\displaystyle \:k\;=\;\frac{2\cdot4\cdot6\,\cdots\,2000}{1000!} \;=\;\frac{2\cdot4\cdot6\,\cdots\,2000}{1\cdot2\cdot3\,\cdots\,1000}\) Watch this: \(\displaystyle \;k\;=\;\frac{\not2^2\cdot\not4^2\cdot\not6^2\cdot\not8^2\,\cdots\,\sout{2000}^2}{\not1\,\cdot\,\not2\,\cdot\,\not3\,\cdot\,\not4\,\cdots\,\sout{1000}} \;=\;2^{^{1000}}\)
Re: Another question Hello, 21385! A tricky problem . . . I had to baby-talk my way through it. Solve for \(\displaystyle k:\;\frac{2000!}{1000!}\:=\:k(1\cdot3\cdot5\cdot7\,\cdots\,1999)\) Click to expand... We have: \(\displaystyle \1000!)k\;=\;\frac{2000!}{1\cdot3\cdot5\,\cdots\,1999}\) On the right side, all the odd factors cancel out. . . and we have: \(\displaystyle \1000!)k \;=\;2\cdot4\cdot6\,\cdots\,2000\) Then: \(\displaystyle \:k\;=\;\frac{2\cdot4\cdot6\,\cdots\,2000}{1000!} \;=\;\frac{2\cdot4\cdot6\,\cdots\,2000}{1\cdot2\cdot3\,\cdots\,1000}\) Watch this: \(\displaystyle \;k\;=\;\frac{\not2^2\cdot\not4^2\cdot\not6^2\cdot\not8^2\,\cdots\,\sout{2000}^2}{\not1\,\cdot\,\not2\,\cdot\,\not3\,\cdot\,\not4\,\cdots\,\sout{1000}} \;=\;2^{^{1000}}\)