O ozero New member Joined Apr 9, 2021 Messages 1 Apr 9, 2021 #1 { | x - 2 | + y^2 = 2-x { y=x^2+2x-15 (I don't know what I can do with first equation, if second turn to y=(x+5)(x-3)) Last edited: Apr 9, 2021
{ | x - 2 | + y^2 = 2-x { y=x^2+2x-15 (I don't know what I can do with first equation, if second turn to y=(x+5)(x-3))
D Deleted member 4993 Guest Apr 9, 2021 #2 ozero said: { | x - 2 | + y^2 = 2-x { y=x^2+2x-15 (I don't know what I can do with first equation, if second turn to y=(x+5)(x-3)) Click to expand... { | x - 2 | + y^2 = 2-x { y=x^2+2x-15 ............................... (1) { y=x^2+2x-15.............................................(2) If x < 2 Eqn. (1) becomes { | x - 2 | + y^2 = 2 - x - (x - 2) + y^2 = 2 - x → y^2 = 0 ........ continue.
ozero said: { | x - 2 | + y^2 = 2-x { y=x^2+2x-15 (I don't know what I can do with first equation, if second turn to y=(x+5)(x-3)) Click to expand... { | x - 2 | + y^2 = 2-x { y=x^2+2x-15 ............................... (1) { y=x^2+2x-15.............................................(2) If x < 2 Eqn. (1) becomes { | x - 2 | + y^2 = 2 - x - (x - 2) + y^2 = 2 - x → y^2 = 0 ........ continue.
skeeter Elite Member Joined Dec 15, 2005 Messages 3,204 Apr 9, 2021 #3 [math]|x-2| = (x-2) \text{ if } x \ge 2[/math] [math]|x-2| = -(x-2) = (2-x) \text{ if } x < 2[/math] see what you can do from here ...
[math]|x-2| = (x-2) \text{ if } x \ge 2[/math] [math]|x-2| = -(x-2) = (2-x) \text{ if } x < 2[/math] see what you can do from here ...
L lex Full Member Joined Mar 3, 2021 Messages 965 Apr 11, 2021 #4 You end up with two questions to do: [MATH]\boxed{x-2 + y^2 = 2-x \hspace{2cm} \text{when }x\gt2\\ y = (x + 5)(x - 3)}[/MATH]and [MATH]\boxed{2-x + y^2 = 2-x \hspace{2cm} \text{when }x\le 2\\ y = (x + 5)(x - 3)}[/MATH] i.e. solve (1) [MATH]\boxed{y^2 = 2(2-x) \hspace{2cm} \text{when }x\gt2\\ y = (x + 5)(x - 3)}[/MATH]and (2) [MATH]\boxed{y^2 = 0\hspace{2cm} \text{when }x\le 2\\ y = (x + 5)(x - 3)}[/MATH] Note for (1), the implication of [MATH]y^2=2(2-x) \text{ when } x\gt 2[/MATH]
You end up with two questions to do: [MATH]\boxed{x-2 + y^2 = 2-x \hspace{2cm} \text{when }x\gt2\\ y = (x + 5)(x - 3)}[/MATH]and [MATH]\boxed{2-x + y^2 = 2-x \hspace{2cm} \text{when }x\le 2\\ y = (x + 5)(x - 3)}[/MATH] i.e. solve (1) [MATH]\boxed{y^2 = 2(2-x) \hspace{2cm} \text{when }x\gt2\\ y = (x + 5)(x - 3)}[/MATH]and (2) [MATH]\boxed{y^2 = 0\hspace{2cm} \text{when }x\le 2\\ y = (x + 5)(x - 3)}[/MATH] Note for (1), the implication of [MATH]y^2=2(2-x) \text{ when } x\gt 2[/MATH]