sum formula for 1/x^2 + 1/x^2 + 1/x^3 + ...?

Re: last question - sum formula?

Hello, deemanw!


What is formula for: \(\displaystyle \L\,\frac{1}{x^1} \,+ \,\frac{1}{x^2}\,+\,\frac{1}{x^3}\,+\,\frac{1}{x^4}\,+\,\cdots\)

The sum of an infinite geometric series is: \(\displaystyle \L\,S \;=\;\frac{a}{1 - r}\)
    \displaystyle \;\;where a\displaystyle a is the first term and r\displaystyle r is the common ratio.

We are given a geometric series with: a=1x\displaystyle \,a\,=\,\frac{1}{x} and r=1x\displaystyle r\,=\,\frac{1}{x}

Therefore, the sum is: \(\displaystyle \L\,S\;= \;\frac{\frac{1}{x}}{1\,-\frac{1}{x}} \;= \;\frac{1}{x\,-\,1}\)

 
Top