Prove that series
\(\displaystyle \displaystyle \sum_{n=1 }^{+\infty }a_{n}\) and \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) or converge together or diverge together. When they converge, find \(\displaystyle \alpha\) to we have \(\displaystyle \sum_{n=1}^{+\infty }a_{n}=\alpha + \sum_{n=m}^{+\infty }a_{n}\)
----------------------
I will prove that \(\displaystyle \sum_{n=1 }^{+\infty }a_{n}\) converges \(\displaystyle \Leftrightarrow\) \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) converges.
We have the nth partial sums of seri \(\displaystyle \sum_{n=1 }^{+\infty }a_{n}\) is \(\displaystyle s_{n}=\sum_{k=1 }^{n }a_{k}\) and the nth partial sums of seri \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) is \(\displaystyle t_{n+m-1}=\sum_{k=m }^{n+m-1 }a_{k}\) (or the nth partial sums of seri \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) is\(\displaystyle t_{n}=\sum_{k=m }^{n}a_{k}\) ? I think I have problem with this)
We prove that the sequence \(\displaystyle (s_{n})\) converges \(\displaystyle \Leftrightarrow\) sequence \(\displaystyle (t_{n+m-1})\) converges
First, suppose we have the sequence \(\displaystyle (s_{n})\) converges and \(\displaystyle \lim_{n\rightarrow \infty }s_{n}=b\). We have \(\displaystyle \forall \epsilon >0,\exists n_{0}\in \mathbb{N}, \forall n\geq n_{0}:|s_{n}-b|<\epsilon\). Cause \(\displaystyle n+m-1\geq n \geq n_{0}\) so \(\displaystyle |s_{n+m-1}-b|< \epsilon \Rightarrow |t_{n+m-1}+ \sum_{k=1 }^{m-1 }a_{k}-b|< \epsilon\).
Therefore \(\displaystyle \forall \epsilon >0,\exists n_{0}\in \mathbb{N}, \forall n\geq n_{0}:|t_{n+m-1}-( b-\sum_{k=1 }^{m-1 }a_{k})|<\epsilon\). So \(\displaystyle (t_{n+m-1})\) converges and \(\displaystyle \lim_{n\rightarrow \infty }t_{n+m-1}=b-\sum_{k=1 }^{m-1 }a_{k} \)
Second, suppose we have the sequence \(\displaystyle (t_{n})\) converges and \(\displaystyle \lim_{n\rightarrow \infty }t_{n}=b\). I'm stuck at this.
Please tell me where I was wrong. Thank you very much.
\(\displaystyle \displaystyle \sum_{n=1 }^{+\infty }a_{n}\) and \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) or converge together or diverge together. When they converge, find \(\displaystyle \alpha\) to we have \(\displaystyle \sum_{n=1}^{+\infty }a_{n}=\alpha + \sum_{n=m}^{+\infty }a_{n}\)
----------------------
I will prove that \(\displaystyle \sum_{n=1 }^{+\infty }a_{n}\) converges \(\displaystyle \Leftrightarrow\) \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) converges.
We have the nth partial sums of seri \(\displaystyle \sum_{n=1 }^{+\infty }a_{n}\) is \(\displaystyle s_{n}=\sum_{k=1 }^{n }a_{k}\) and the nth partial sums of seri \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) is \(\displaystyle t_{n+m-1}=\sum_{k=m }^{n+m-1 }a_{k}\) (or the nth partial sums of seri \(\displaystyle \sum_{n=m }^{+\infty }a_{n}\) is\(\displaystyle t_{n}=\sum_{k=m }^{n}a_{k}\) ? I think I have problem with this)
We prove that the sequence \(\displaystyle (s_{n})\) converges \(\displaystyle \Leftrightarrow\) sequence \(\displaystyle (t_{n+m-1})\) converges
First, suppose we have the sequence \(\displaystyle (s_{n})\) converges and \(\displaystyle \lim_{n\rightarrow \infty }s_{n}=b\). We have \(\displaystyle \forall \epsilon >0,\exists n_{0}\in \mathbb{N}, \forall n\geq n_{0}:|s_{n}-b|<\epsilon\). Cause \(\displaystyle n+m-1\geq n \geq n_{0}\) so \(\displaystyle |s_{n+m-1}-b|< \epsilon \Rightarrow |t_{n+m-1}+ \sum_{k=1 }^{m-1 }a_{k}-b|< \epsilon\).
Therefore \(\displaystyle \forall \epsilon >0,\exists n_{0}\in \mathbb{N}, \forall n\geq n_{0}:|t_{n+m-1}-( b-\sum_{k=1 }^{m-1 }a_{k})|<\epsilon\). So \(\displaystyle (t_{n+m-1})\) converges and \(\displaystyle \lim_{n\rightarrow \infty }t_{n+m-1}=b-\sum_{k=1 }^{m-1 }a_{k} \)
Second, suppose we have the sequence \(\displaystyle (t_{n})\) converges and \(\displaystyle \lim_{n\rightarrow \infty }t_{n}=b\). I'm stuck at this.
Please tell me where I was wrong. Thank you very much.
Attachments
Last edited: