V Vavin07 New member Joined Sep 25, 2019 Messages 1 Sep 25, 2019 #1 Find the values of SinΘ , CosΘ , and TanΘ for an angle in standard position with (-3,20) on its terminal side. Im confused on whether you use r^2= √ -3^2+√ 20^2 which is Undefined or r^2=√ -3^2+20^2 which is r=n=4√391 ?
Find the values of SinΘ , CosΘ , and TanΘ for an angle in standard position with (-3,20) on its terminal side. Im confused on whether you use r^2= √ -3^2+√ 20^2 which is Undefined or r^2=√ -3^2+20^2 which is r=n=4√391 ?
MarkFL Super Moderator Staff member Joined Nov 24, 2012 Messages 3,021 Sep 25, 2019 #2 Hello, and welcome to FMH! I would let: [MATH]r=\sqrt{x^2+y^2}=\sqrt{(-3)^2+(20)^2}=\sqrt{409}[/MATH] And then: [MATH]\sin(\theta)=\frac{y}{r}[/MATH] [MATH]\cos(\theta)=\frac{x}{r}[/MATH] [MATH]\tan(\theta)=\frac{y}{x}[/MATH]
Hello, and welcome to FMH! I would let: [MATH]r=\sqrt{x^2+y^2}=\sqrt{(-3)^2+(20)^2}=\sqrt{409}[/MATH] And then: [MATH]\sin(\theta)=\frac{y}{r}[/MATH] [MATH]\cos(\theta)=\frac{x}{r}[/MATH] [MATH]\tan(\theta)=\frac{y}{x}[/MATH]