J Jason76 Senior Member Joined Oct 19, 2012 Messages 1,180 Oct 14, 2013 #1 \(\displaystyle y = \dfrac{9 - \sec x}{\tan x}\) \(\displaystyle y' = \dfrac{[\tan x][-\sec x \tan x] - [9 - \sec x][sec^{2} x]}{\tan^{2} x}\)
\(\displaystyle y = \dfrac{9 - \sec x}{\tan x}\) \(\displaystyle y' = \dfrac{[\tan x][-\sec x \tan x] - [9 - \sec x][sec^{2} x]}{\tan^{2} x}\)
stapel Super Moderator Staff member Joined Feb 4, 2004 Messages 16,550 Oct 14, 2013 #2 Jason76 said: \(\displaystyle y = \dfrac{9 - \sec x}{\tan x}\) \(\displaystyle y' = \dfrac{[\tan x][-\sec x \tan x] - [9 - \sec x][sec^{2} x]}{\tan^{2} x}\) Click to expand... What is your question regarding this exercise?
Jason76 said: \(\displaystyle y = \dfrac{9 - \sec x}{\tan x}\) \(\displaystyle y' = \dfrac{[\tan x][-\sec x \tan x] - [9 - \sec x][sec^{2} x]}{\tan^{2} x}\) Click to expand... What is your question regarding this exercise?