Trig identities, etc.

gecko5068

New member
Joined
May 8, 2006
Messages
16
Ive done around 80 of these, but these last ones are a bit tricky. Also, how do you plug in cos^2x, versus cosx^2 in a calculator (ti-86 btw)

1)cscx/sin^2x+secx+cos^2x-1 I think that one is cotx

2)cot^2x/cscx-1 try factoring and using fundamental identities, according to my teacher

3)prove sec^2x/sin^2x+cos^2x=1+tan^2x (I think both simplify to sec^2x

4)2sin^2xcosx=cosx solve by factoring and/or extracting square roots?

5)2sin^2x+3sinx-2=0 find all EXACT solutions in [0,2pi)

6)lcotxl <or= square root of 3, find all exact solutions in [0,2pi]

7)tan 15deg, using sum/difference identities, exact anwser

8)which identity is true?
a)sin^2x-cosx=1=2sinx
b)sin^3x-sinx=-cos^2xsinx

any help is GREATLY appreciated
 
Hello, gecko50681

Here are a few of them . . .

For the "solve" problems, I assume the domain is [0,2π)\displaystyle \,[0,\,2\pi)

4)    2sin2xcosx=cosx\displaystyle 4)\;\;2\cdot\sin^2x\cdot\cos x\:=\:\cos x
We have: 2sin2xcosxcosx=0\displaystyle \,2\cdot\sin^2x\cdot\cos x\,-\,\cos x\:=\:0

Factor: cosx(2sin2x1)=0\displaystyle \,\cos x(2\cdot\sin^2x\,-\,1)\:=\:0

Then: cosx=0        x=π2,  3π2\displaystyle \,\cos x\:=\:0\;\;\Rightarrow\;\;x\,=\,\frac{\pi}{2},\;\frac{3\pi}{2}

And: 2sin2x1=0        sinx=±12        x=π4,  3π4,  5π4,  7π4\displaystyle \,2\cdot\sin^2x\,-\,1\:=\:0\;\;\Rightarrow\;\;\sin x\,=\,\pm\frac{1}{\sqrt{2}}\;\;\Rightarrow\;\;x\:=\:\frac{\pi}{4},\;\frac{3\pi}{4},\;\frac{5\pi}{4},\;\frac{7\pi}{4}


5)    2sin2x+3sinx2  =  0\displaystyle 5)\;\;2\sin^2x\,+\,3\sin x\,-\,2\;=\;0
Factor: (2sinx1)(sinx+2)=0\displaystyle \,(2\sin x\,-\,1)(\sin x\,+\,2)\:=\:0

Then: 2sinx1=0        sinx=12        x=π6,  5π6\displaystyle \,2\sin x\,-\,1\:=\:0\;\;\Rightarrow\;\;\sin x\,=\,\frac{1}{2}\;\;\Rightarrow\;\;x\,=\,\frac{\pi}{6},\;\frac{5\pi}{6}

And: sinx+2=0        sinx=2\displaystyle \,\sin x\,+\,2\:=\:0\;\;\Rightarrow\;\;\sin x\,=\,-2 . . . no solutions


6)    cotx3\displaystyle 6)\;\;|\cot x|\:\leq\:\sqrt{3}
We have: 3cotx3\displaystyle \,-\sqrt{3} \:\leq\:\cot x\:\leq\:\sqrt{3}

Therefore: x\displaystyle \,x is in [π6,5π6]\displaystyle \,\left[\frac{\pi}{6},\,\frac{5\pi}{6}\right]\, or [7π6,11π6]\displaystyle \,\left[\frac{7\pi}{6},\,\frac{11\pi}{6}\right]


7)    Find tan15o\displaystyle 7)\;\;\text{Find }\tan15^o
Formula: \(\displaystyle \,\tan(A\,-\,B)\;=\;\L\frac{\tan A \,-\,\tan B}{1\,+\,\tan A\cdot\tan B}\)

We have: \(\displaystyle \tan(45^o\,-\,30^o) \;= \;\L\frac{\tan45^o\,-\,\tan30^o}{1\,+\,\tan45^o\cdot\tan30^o} \;= \;\frac{1\,-\,\frac{1}{\sqrt{3}}}{1\,+\,1\cdot\frac{1}{\sqrt{3}}}\)

Multiply top and bottom by \(\displaystyle \sqrt{3}:\L\;\;\frac{\sqrt{3}\,-\,1}{\sqrt{3}\,+\,1}\)

Rationalize: \(\displaystyle \,\L\frac{\sqrt{3}\,-\,1}{\sqrt{3}\,+\,1}\,\cdot\,\frac{\sqrt{3}\,-\,1}{\sqrt{3}\,-\,1} \;= \;\frac{3\,-\,2\sqrt{3}\,+\,1}{3\,-\,1} \;= \;\frac{4\,-\,2\sqrt{3}}{2}\)  =  23\displaystyle \;=\;2\,-\,\sqrt{3}
 
1 and 3 I have solved, number two I still havent confirmed sinx^2 is right, and soroban thanks alot for the help. I hate asking for anwsers, so ill make sure to study up how you did it =)

thanks a ton
 
could anyone get me started one number two? the rest I understand pretty well now, thanks
 
gecko5068 said:
could anyone get me started one number two?
What are the instructions for this exercise?

Thank you.

Eliz.
 
To "get started", try applying the suggestions. What identity, involving cot<sup>2</sup>(x), have you learned? Plug that in. Factor the resulting numerator. Cancel.

Eliz.
 
cot^2x is involved in 1+cot^2x=csc^2x

so cot^2x=csc^2x-1
and
csc^2x-1/cscx-1

numerator factored to csc(cscx-1)

so csc(cscx-1)/(cscx-1) is csc, doesnt the x get canceled out?

I must be making a stupid error.
 
How are you getting that csc<sup>2</sup>(x) - 1 is equal to csc(csc(x) - 1)? They're quite unrelated.

Eliz.
 
I dont know, ive been dealing with this since 5 o clock and im getting tired of it, maybe it would be best to just sleep on it and come back tomorrow morning.

Thanks for the help everyone
 
Top