\(\displaystyle \int \cos^{2} x \sin x dx\)
\(\displaystyle u = \cos x\)
\(\displaystyle du = \sin x dx\)
\(\displaystyle -du = \sin x dx\)
\(\displaystyle -\int u^{2} du\)
\(\displaystyle \rightarrow -\dfrac{u^{3}}{3} + C\)
\(\displaystyle \rightarrow -\dfrac{\cos^{3} x}{3} + C\)
This is right according to the book.
How does this compare to, regarding integration strategy (which I believe is wrong):
\(\displaystyle \int \sec^{2} x \tan x dx\)
\(\displaystyle u = \sec x\)
\(\displaystyle du = \sec x \tan x dx\)
\(\displaystyle \dfrac{1}{\sec x}du = \tan x dx\)
\(\displaystyle \dfrac{1}{\sec x} \int \sec^{2} x du\)
Using the formula \(\displaystyle \dfrac{u^{n + 1}}{n + 1}\) which we would only use in the case of trig function raised to some power.
\(\displaystyle \rightarrow (\dfrac{1}{\sec x})\dfrac{u}{3} + C\)
\(\displaystyle \rightarrow (\dfrac{1}{\sec x})\dfrac{\sec^{3} x}{3} + C\)
\(\displaystyle u = \cos x\)
\(\displaystyle du = \sin x dx\)
\(\displaystyle -du = \sin x dx\)
\(\displaystyle -\int u^{2} du\)
\(\displaystyle \rightarrow -\dfrac{u^{3}}{3} + C\)
\(\displaystyle \rightarrow -\dfrac{\cos^{3} x}{3} + C\)
How does this compare to, regarding integration strategy (which I believe is wrong):
\(\displaystyle \int \sec^{2} x \tan x dx\)
\(\displaystyle u = \sec x\)
\(\displaystyle du = \sec x \tan x dx\)
\(\displaystyle \dfrac{1}{\sec x}du = \tan x dx\)
\(\displaystyle \dfrac{1}{\sec x} \int \sec^{2} x du\)
Using the formula \(\displaystyle \dfrac{u^{n + 1}}{n + 1}\) which we would only use in the case of trig function raised to some power.
\(\displaystyle \rightarrow (\dfrac{1}{\sec x})\dfrac{u}{3} + C\)
\(\displaystyle \rightarrow (\dfrac{1}{\sec x})\dfrac{\sec^{3} x}{3} + C\)
Last edited: