Trig sub problem

masteroc

New member
Joined
Oct 25, 2011
Messages
1
So the problem I am having is that I know (u)=arcsin(x/2), but then I have to substitute that into: (1/2)ln(sec(u)+tan(u)) and im not sure how to go about that. Someone told me that comes out to (1/2)ln((x/2)/sqrt(1-(x/2)^2) + 1/sqrt(1-(x/2)^2)) but im not sure how they got that.


Thanks
 
sec(arcsin(x/2))

Draw a right triangle.
Lable an acute angle 'a'.

Consider a = arcsin(x/2), or sin(a) = x/2

Lable the side opposite 'a'. Call the length 'x'.
Lable the hypotenuse. Call the length '2'.
The Pythagorean Theorem tells us that the length of the adjacent side is sqrt(2^2 - x^2)

sec(arcsin(x/2)) = sec(a) = [sqrt(2^2 - x^2)]/2

Do the same with the tangent.
 
Hello, masteroc!

A slightly different explanation . . .


I know: .u=arcsin(x2)\displaystyle u \,=\,\arcsin\left(\frac{x}{2}\right)
Then I have to substitute that into: .12lnsecu+tanu\displaystyle \frac{1}{2}\ln|\sec u + \tan u |

We have: .u=arcsin(x2)\displaystyle u\:=\:\arcsin\left(\frac{x}{2}\right)

. . Then: .sinu=x2=opphyp\displaystyle \sin u \:=\:\frac{x}{2} \:=\:\frac{opp}{hyp}

That is, u\displaystyle u is in a right triangle with opp=x,hyp=2.\displaystyle opp = x,\:hyp = 2.

. . Pythagorus tell us: .adj=4x2\displaystyle adj = \sqrt{4-x^2}

Hence: .{secu=hypadj=24x2tanu=oppadj=x4x2}\displaystyle \begin{Bmatrix}\sec u &=& \frac{hyp}{adj} &=& \frac{2}{\sqrt{4-x^2}} \\ \tan u &=& \frac{opp}{adj} &=& \frac{x}{\sqrt{4-x^2}} \end{Bmatrix}


Substitute: .12secu+tanu  =  1224x2+x4x2  =  12ln2+x4x2\displaystyle \frac{1}{2}|\sec u + \tan u| \;=\;\frac{1}{2}\left|\dfrac{2}{\sqrt{4-x^2}} + \dfrac{x}{\sqrt{4-x^2}}\right| \;=\;\frac{1}{2}\ln\left|\dfrac{2+x}{\sqrt{4-x^2}}\right|


. . . . . . =  12ln2+x(2x)(2+x)  =  12ln2+x(2x)12(2+x)12\displaystyle =\;\frac{1}{2}\ln\left|\dfrac{2+x}{\sqrt{(2-x)(2+x)}}\right| \;=\;\frac{1}{2}\ln\left|\dfrac{2+x}{(2-x)^{\frac{1}{2}}(2+x)^{\frac{1}{2}}}\right|

. . . . . . =  12ln(2+x)12(2x)12  =  12ln2+x2x12  =  14ln2+x2x\displaystyle =\;\frac{1}{2}\ln\left|\dfrac{(2+x)^{\frac{1}{2}}}{(2-x)^{\frac{1}{2}}}\right| \;=\;\frac{1}{2}\ln\left|\dfrac{2+x}{2-x}\right|^{\frac{1}{2}} \;=\;\frac{1}{4}\ln\left|\dfrac{2+x}{2-x}\right|
 
Top