Urgent: Measurable space theory

SophieToft

New member
Joined
Oct 3, 2006
Messages
17
If E is a non empty set and(Bn)n1\displaystyle (B_n)_{n \geq 1} are elements in the set 2E\displaystyle 2^E.

I then need help showing the following:

limnsupBn=limninfBn=n=1Bn\displaystyle lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcup_{n\, =\, 1} ^{\infty}\, B_n

if and only if BnBn+1\displaystyle B_n\, \subseteq\, B_{n+1}, for all n1\displaystyle n\, \geq\, 1,

Also I need to show

limnsupBn=limninfBn=n=1Bn\displaystyle lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcap_{n=1} ^{\infty} B_n

if and only if BnBn+1\displaystyle B_n\, \supseteq\, B_{n+1}, for all n1\displaystyle n\, \geq\, 1

I know that for every sequence (an)n1\displaystyle (a_n)_{n\, \geq\, 1} of elements in the set \(\displaystyle - \infty\ \union\ \mathbb{R}\ \union\ \infty\).

limnsupan=inf(Mnn1)\displaystyle lim_n\, sup\, a_n\, =\, inf(M_n|\, n\, \geq\, 1), where \(\displaystyle M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1\).

limninfan=inf(mnn1)\displaystyle lim_n\, inf\, a_n\, =\, inf(m_n|\, n\, \geq\, 1), where \(\displaystyle m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1\).

But could somebody please give me a hint or an idear on how to use this fact to show the original task???

Sincerely Yours
Sophie Toft
_________________________________-
Edited by stapel -- Reason for edit: inserting formatting tags
 
I, for one, simply cannot read this posting.
It appears that you are using TeX.
Why not edit the posting and use the TeX properly.
 
Top