SophieToft
New member
- Joined
- Oct 3, 2006
- Messages
- 17
If E is a non empty set and(Bn)n≥1 are elements in the set 2E.
I then need help showing the following:
limnsupBn=limninfBn=n=1⋃∞Bn
if and only if Bn⊆Bn+1, for all n≥1,
Also I need to show
limnsupBn=limninfBn=n=1⋂∞Bn
if and only if Bn⊇Bn+1, for all n≥1
I know that for every sequence (an)n≥1 of elements in the set \(\displaystyle - \infty\ \union\ \mathbb{R}\ \union\ \infty\).
limnsupan=inf(Mn∣n≥1), where \(\displaystyle M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1\).
limninfan=inf(mn∣n≥1), where \(\displaystyle m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1\).
But could somebody please give me a hint or an idear on how to use this fact to show the original task???
Sincerely Yours
Sophie Toft
_________________________________-
Edited by stapel -- Reason for edit: inserting formatting tags
I then need help showing the following:
limnsupBn=limninfBn=n=1⋃∞Bn
if and only if Bn⊆Bn+1, for all n≥1,
Also I need to show
limnsupBn=limninfBn=n=1⋂∞Bn
if and only if Bn⊇Bn+1, for all n≥1
I know that for every sequence (an)n≥1 of elements in the set \(\displaystyle - \infty\ \union\ \mathbb{R}\ \union\ \infty\).
limnsupan=inf(Mn∣n≥1), where \(\displaystyle M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1\).
limninfan=inf(mn∣n≥1), where \(\displaystyle m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1\).
But could somebody please give me a hint or an idear on how to use this fact to show the original task???
Sincerely Yours
Sophie Toft
_________________________________-
Edited by stapel -- Reason for edit: inserting formatting tags