Vectors

sami123

New member
Joined
May 8, 2019
Messages
8
2. If p = 3i - j, q = 4i + 5j and r = -6i + 2j
a. can you find the find numbers s and t such that q = sp + tr
Can u any one tell me when it is not possible to find numbers like s and t?
 

pka

Elite Member
Joined
Jan 29, 2005
Messages
8,803
2. If p = 3i - j, q = 4i + 5j and r = -6i + 2j
a. can you find the find numbers s and t such that q = sp + tr
Can u any one tell me when it is not possible to find numbers like s and t?
You want to solve: \(\displaystyle s<3,-1>+t<-6,2>=<4,5>\)
You should have a system of two equations in two unknowns.
 

tkhunny

Moderator
Staff member
Joined
Apr 12, 2005
Messages
10,303
Have you considered writing out the addition and seeing if it leads to a rational system that is readily solved?
 
Last edited:

sami123

New member
Joined
May 8, 2019
Messages
8

You want to solve: \(\displaystyle s<3,-1>+t<-6,2>=<4,5>\)
You should have a system of two equations in two unknowns.
You want to solve: \(\displaystyle s<3,-1>+t<-6,2>=<4,5>\)
You should have a system of two equations in two unknowns.
The answer given in book is not exist
I still not understand what is the condition when we are not able to find numbers??
 

tkhunny

Moderator
Staff member
Joined
Apr 12, 2005
Messages
10,303
Did you get the system that must be solved?

You could also notice that r = -2p. That could lead to interesting conclusions.

You can't have NO idea,
 

pka

Elite Member
Joined
Jan 29, 2005
Messages
8,803
You want to solve: \(\displaystyle s<3,-1>+t<-6,2>=<4,5>\)
You should have a system of two equations in two unknowns.
The answer given in book is not exist
I still not understand what is the condition when we are not able to find numbers??
The book is correct. But it was you task to discover that fact for yourself. It is not ours.
\(\displaystyle \left\{ \begin{array}{l}3s - 6t = 4\\ - s + 2t = 5\end{array} \right.\)
It is easy to see that system has no solution. Again that was your job.
 
Top