S smsmith New member Joined Sep 15, 2006 Messages 18 Dec 17, 2006 #1 Verify tanx^2 = ((1 - cos2x) / (1 + cos2x) using double angle I do not know where to begin with this one. Any help would be appreciated.
Verify tanx^2 = ((1 - cos2x) / (1 + cos2x) using double angle I do not know where to begin with this one. Any help would be appreciated.
stapel Super Moderator Staff member Joined Feb 4, 2004 Messages 16,550 Dec 17, 2006 #2 smsmith said: I do not know where to begin with this one. Click to expand... Maybe... use the double-angle identities...? Eliz.
smsmith said: I do not know where to begin with this one. Click to expand... Maybe... use the double-angle identities...? Eliz.
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Dec 17, 2006 #3 First of all it has to be \(\displaystyle \left[ {\tan (x)} \right]^2 = \tan ^2 (x).\) \(\displaystyle \begin{array}{rcl} \frac{{1 - \cos (2x)}}{{1 + \cos (2x)}} & = & \frac{{1 - \left[ {1 - 2\sin ^2 (x)} \right]}}{{1 + \left[ {2\cos ^2 (x) - 1} \right]}} \\ & = & \frac{{2\sin ^2 (x)}}{{2\cos ^2 (x)}} \\ \end{array}\)
First of all it has to be \(\displaystyle \left[ {\tan (x)} \right]^2 = \tan ^2 (x).\) \(\displaystyle \begin{array}{rcl} \frac{{1 - \cos (2x)}}{{1 + \cos (2x)}} & = & \frac{{1 - \left[ {1 - 2\sin ^2 (x)} \right]}}{{1 + \left[ {2\cos ^2 (x) - 1} \right]}} \\ & = & \frac{{2\sin ^2 (x)}}{{2\cos ^2 (x)}} \\ \end{array}\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Dec 17, 2006 #4 Re: Verify tanx^2 = ((1 - cos2x) / (1 + cos2x) using dbl. an Hello, smsmith! Verify: \(\displaystyle \,\tan^2x \:= \:\frac{1\,-\,\cos2x}{1\,+\,\cos2x}\) using double-angle identities. Click to expand... You're expected to know these identities: . . \(\displaystyle \sin^2x \:=\:\frac{1\,-\,\cos2x}{2}\;\;\;\;\;\cos^2x \:=\:\frac{1\,+\,\cos2x}{2}\) We have: \(\displaystyle \:\tan^2x \:=\:\L\left(\frac{\sin x}{\cos x}\right)^2\:=\:\frac{\sin^2x}{\cos^2x} \:=\:\frac{\frac{1\,-\,\cos2x}{2}}{\frac{1\,+\,\cos2x}{2}} \:=\:\frac{1\,-\,\cos2x}{1\,+\,\cos2x}\)
Re: Verify tanx^2 = ((1 - cos2x) / (1 + cos2x) using dbl. an Hello, smsmith! Verify: \(\displaystyle \,\tan^2x \:= \:\frac{1\,-\,\cos2x}{1\,+\,\cos2x}\) using double-angle identities. Click to expand... You're expected to know these identities: . . \(\displaystyle \sin^2x \:=\:\frac{1\,-\,\cos2x}{2}\;\;\;\;\;\cos^2x \:=\:\frac{1\,+\,\cos2x}{2}\) We have: \(\displaystyle \:\tan^2x \:=\:\L\left(\frac{\sin x}{\cos x}\right)^2\:=\:\frac{\sin^2x}{\cos^2x} \:=\:\frac{\frac{1\,-\,\cos2x}{2}}{\frac{1\,+\,\cos2x}{2}} \:=\:\frac{1\,-\,\cos2x}{1\,+\,\cos2x}\)