I have been answering some problems on Khan Academy but I am struggling with finding whether I should be including a negative sign or not. I have read the step-by-step guide on the website which states In the numerator, let's divide by [FONT=KaTeX_Main]-\sqrt{x^6}[/FONT][FONT=KaTeX_Main]−√[FONT=KaTeX_Math]x6minus, square root of, x, start superscript, 6, end superscript, end square root[/FONT][/FONT], since for negative values, [FONT=KaTeX_Main]x^3=-\sqrt{x^6}[FONT=KaTeX_Main][FONT=KaTeX_Math]x3=−√[FONT=KaTeX_Math]x6[/FONT][/FONT]x, start superscript, 3, end superscript, equals, minus, square root of, x, start superscript, 6, end superscript, end square root[/FONT][/FONT]. but I don't really understand how we know that we must divide by a negative.
. . . . .\(\displaystyle \displaystyle \lim_{x \rightarrow -\infty}\, \dfrac{\sqrt{\strut 16x^6\, -\, x^2\,}}{6x^3\, +\, x^2}\)
Dividing through:
. . . . .\(\displaystyle \displaystyle \dfrac{\sqrt{\strut 16x^6\, -\, x^2\,}}{6x^3\, +\, x^2}\, \cdot\, \dfrac{\frac{1}{\sqrt{\strut x^6\,}}}{\frac{1}{x^3}}\)
Simplifying:
. . . . .\(\displaystyle \displaystyle \lim_{x \rightarrow -\infty}\, \dfrac{4\, -\, \frac{1}{x^2}}{6\, +\, \frac{1}{x}}\)
Therefore:
. . . . .\(\displaystyle \displaystyle \lim_{x \rightarrow -\infty}\, \dfrac{\sqrt{\strut 16x^6\, -\, x^2\,}}{6x^3\, +\, x^2}\, =\, \dfrac{2}{3}\)
However the correct answer is -2/3.
Where should I be including the negative into my working?
Thanks
Jake
. . . . .\(\displaystyle \displaystyle \lim_{x \rightarrow -\infty}\, \dfrac{\sqrt{\strut 16x^6\, -\, x^2\,}}{6x^3\, +\, x^2}\)
Dividing through:
. . . . .\(\displaystyle \displaystyle \dfrac{\sqrt{\strut 16x^6\, -\, x^2\,}}{6x^3\, +\, x^2}\, \cdot\, \dfrac{\frac{1}{\sqrt{\strut x^6\,}}}{\frac{1}{x^3}}\)
Simplifying:
. . . . .\(\displaystyle \displaystyle \lim_{x \rightarrow -\infty}\, \dfrac{4\, -\, \frac{1}{x^2}}{6\, +\, \frac{1}{x}}\)
Therefore:
. . . . .\(\displaystyle \displaystyle \lim_{x \rightarrow -\infty}\, \dfrac{\sqrt{\strut 16x^6\, -\, x^2\,}}{6x^3\, +\, x^2}\, =\, \dfrac{2}{3}\)
However the correct answer is -2/3.
Where should I be including the negative into my working?
Thanks
Jake
Last edited by a moderator: