word problem

swimmer3

New member
Joined
Aug 30, 2009
Messages
14
Two planes take off at the same time from an airport. The first plane is flying at 260 mph on a bearing of S45 degrees E. The second plane is flying in the direction S 45 degrees W at 280mph. If there are no wind currents blowing, how far apart are they after 2 hrs? What is the bearing of the second plane form the first after 2 hrs?

I know they are 764 miles apart after 2 hrs. How do I figure out the final bearing?
 
Hello, swimmer3!

Two planes take off at the same time from an airport.
The first plane is flying at 260 mph on a bearing of S45oE\displaystyle S\,45^oE.
The second plane is flying at 280 mph on a bearing of S45oW\displaystyle S\, 45^oW.
If there are no wind currents blowing, how far apart are they after 2 hrs?
What is the bearing of the second plane from the first after 2 hrs?

I know they are 764 miles apart after 2 hrs.
How do I figure out the final bearing?

After two hours, their positions look like this:
Code:
                        P
                        o           N
                      * : *  520    :
              560   *   :   *       :
                  * 45d : 45d * 45d :
                *       :       *   :
              *         :         * :
            *           S           o A
          *                 *       :
        *           *               :
      *     *        764            M
  B o

The first plane flies from P to A.\displaystyle \text{The first plane flies from }P\text{ to }A.
. . SPA=45o=PAN,    PA=520\displaystyle \angle SPA \,=\,45^o \,=\,\angle PAN,\;\;PA \,=\,520

The second plane flies from P to B.\displaystyle \text{The second plane flies from }P\text{ to }B.
. . SPB=45o,    PB=560\displaystyle \angle SPB \,=\,45^o,\;\;PB \,=\,560

Since ΔAPB is a right triangle:   AB  =  5202+5602  =  764.198927    764 miles\displaystyle \text{Since }\Delta APB\text{ is a right triangle: }\;AB \;=\;\sqrt{520^2 + 560^2} \;=\;764.198927 \;\approx\;764\text{ miles}


We want MAB.\displaystyle \text{We want }\angle MAB.

In ΔPAB, we have: cosA  =  7642+520256022(764)(520)  =  0.680245671\displaystyle \text{In }\Delta PAB\text{, we have: }\:\cos A \;=\;\frac{764^2 + 520^2 - 560^2}{2(764)(520)} \;=\; 0.680245671

Then: A  =  47.13715641o    47o\displaystyle \text{Then: }\:A \;=\;47.13715641^o \;\approx\;47^o

. . Hence: MAB  =  180o45o47o  =  88o\displaystyle \text{Hence: }\:\angle MAB \;=\;180^o - 45^o - 47^o \;=\;88^o


The bearing of the second plane from the first is: S88oW\displaystyle \text{The bearing of the second plane from the first is: }\:S\,88^o\,W

 
Top