\(\displaystyle \lim x \rightarrow \infty[(e^{x} + x)^{2/x} ]\) = indeterminate \(\displaystyle \infty^{0}\)
\(\displaystyle \ln[(e^{x} + x)^{2/x}\)
\(\displaystyle 2/x\ln (e^{x} + x)\)
Simplify
\(\displaystyle \dfrac{2 + \ln x}{x}\)
Use L hopitals
\(\displaystyle \dfrac{1/x}{1} = 0\)
????
\(\displaystyle \lim \rightarrow \infty[(e^{0} + 0)^{2/0} ] = 1\) ???
\(\displaystyle \ln[(e^{x} + x)^{2/x}\)
\(\displaystyle 2/x\ln (e^{x} + x)\)
Simplify
\(\displaystyle \dfrac{2 + \ln x}{x}\)
Use L hopitals
\(\displaystyle \dfrac{1/x}{1} = 0\)
????
\(\displaystyle \lim \rightarrow \infty[(e^{0} + 0)^{2/0} ] = 1\) ???
Last edited: