Limit Problem

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
limx[(ex+x)2/x]\displaystyle \lim x \rightarrow \infty[(e^{x} + x)^{2/x} ] = indeterminate 0\displaystyle \infty^{0}

ln[(ex+x)2/x\displaystyle \ln[(e^{x} + x)^{2/x}

2/xln(ex+x)\displaystyle 2/x\ln (e^{x} + x)

Simplify

2+lnxx\displaystyle \dfrac{2 + \ln x}{x}

Use L hopitals

1/x1=0\displaystyle \dfrac{1/x}{1} = 0

????

lim[(e0+0)2/0]=1\displaystyle \lim \rightarrow \infty[(e^{0} + 0)^{2/0} ] = 1 ???
 
Last edited:
limx[(ex+x)2/x]\displaystyle \lim x \rightarrow \infty[(e^{x} + x)^{2/x} ] = indeterminate 0\displaystyle \infty^{0}

ln[(ex+x)2/x\displaystyle \ln[(e^{x} + x)^{2/x}

2/xln(ex+x)\displaystyle 2/x\ln (e^{x} + x)

Simplify

2+lnxx\displaystyle \dfrac{2 + \ln x}{x}
This is your error. ln(e^x+ x) is NOT equal to ln(x)
The derivative of ln(e^x+ x) is ex+1ex+x\displaystyle \frac{e^x+ 1}{e^x+ x}.
Dividing both numerator and denominator by ex\displaystyle e^x, it is 1+ex1+xex\displaystyle \frac{1+ e^{-x}}{1+ xe^{-x}}.

As x goes to infinity, both ex\displaystyle e^{-x} and xex\displaystyle xe^{-x} go to 0 (you can show that by applying L'Hopital's rule to xex\displaystyle \frac{x}{e^x}).

 

The solution would be to take L hopitals one more time?
 
limx[(ex+x)2/x\displaystyle \lim x \rightarrow \infty[(e^{x} + x)^{2/x}

y=(ex+x)2/x\displaystyle y = (e^{x} + x)^{2/x}

limx=elny\displaystyle \lim x \rightarrow \infty = e^{ln y}

limx=e(2/x)ln(ex+x)\displaystyle \lim x \rightarrow \infty = e^{(2/x)\ln (e^{x} + x)}

take L hopitals

limx=e(2ex+1ex+x)/1\displaystyle lim x \rightarrow \infty = e^{(\dfrac{2e^{x} + 1}{e^{x} + x})/1}

Take l hopitals again

limx=e2exex+1=2\displaystyle \lim x \rightarrow \infty = e^{\dfrac{2e^{x} }{e^{x} + 1}} = 2

So e2\displaystyle e^{2} is the answer on homework.
 
Last edited:
Top