That is definitely an easier way to relate x and y
Why not just calculate \(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}\) from the relation that you have found, instead of putting it in terms of \(\displaystyle \displaystyle \begin{align*} \theta \end{align*}\) though?
\(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( \frac{x}{14} \right) ^{\frac{2}{3}} + \left( \frac{y}{14} \right) ^{\frac{2}{3}} \right] &= \frac{ \mathrm{d} }{ \mathrm{d} x } \, \left( 1 \right) \\ 14^{ - \frac{2}{3} } \cdot \frac{2}{3} \, x^{ - \frac{1}{3} } + 14^{ - \frac{2}{3} } \cdot \frac{2}{3} \, y^{ -\frac{1}{3} } \, \frac{ \mathrm{d} y }{ \mathrm{d} x } &= 0 \\ x^{ -\frac{1}{3} } + y^{ -\frac{1}{3} } \, \frac{\mathrm{d} y }{ \mathrm{d} x } &= 0 \\ y^{ - \frac{1}{3} } \, \frac{ \mathrm{d} y }{ \mathrm{d} x } &= - x^{ - \frac{1}{3} } \\ \frac{ \mathrm{d} y }{ \mathrm{d} x} &= -x^{-\frac{1}{3}}\,y^{\frac{1}{3}} \end{align*}\)
and since \(\displaystyle \displaystyle \begin{align*} \left( \frac{x}{14} \right) ^{\frac{2}{3}} + \left( \frac{y}{14} \right) ^{\frac{2}{3}} &= 1 \end{align*}\) that means
\(\displaystyle \displaystyle \begin{align*} x^{\frac{2}{3}} + y^{\frac{2}{3}} &= 14^{\frac{2}{3}} \\ y^{\frac{2}{3}} &= 14^{\frac{2}{3}} - x^{\frac{2}{3}} \\ y^{\frac{1}{3}} &= \pm \left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \end{align*}\)
and thus
\(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= -x^{-\frac{1}{3}}\,\left[ \pm \left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right)^{\frac{1}{2}} \right] \\ &= \mp x^{-\frac{1}{3}}\,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \\ &= \mp \left( x^{-\frac{2}{3}} \right) ^{\frac{1}{2}} \,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \\ &= \mp \left[ x^{-\frac{2}{3}} \,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) \right] ^{\frac{1}{2}} \\ &= \mp \left[ \left( \frac{14}{x} \right) ^{\frac{2}{3}} - 1 \right] ^{\frac{1}{2}} \end{align*}\)