Find the total arc length of this astroid: x(@)=14cos^3(@), y(@)=14sin^3(@)

rmcginn

New member
Joined
May 28, 2016
Messages
2
The curve defined by:

x(theta)=14cos^3(theta)
y(theta)=14sin^3(theta)

is called an astroid. Find the total arc length of this astroid.
 
The curve defined by:

x(theta)=14cos^3(theta)
y(theta)=14sin^3(theta)

is called an astroid. Find the total arc length of this astroid.

What are your thoughts?

Please share your work with us ...even if you know it is wrong

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/th...Before-Posting
 
The curve defined by:

x(theta)=14cos^3(theta)
y(theta)=14sin^3(theta)

is called an astroid. Find the total arc length of this astroid.

This problem looks interesting. I would start by trying to find a way to relate x and y...

\(\displaystyle \displaystyle \begin{align*} x &= 14\cos^3{\left( \theta \right) } \\ x^2 &= 196\cos^6{\left( \theta \right) } \\ \\ y &= 14\sin^3{ \left( \theta \right) } \\ y^2 &= 196\sin^6{\left( \theta \right) } \\ \\ x^2 + y^2 &= 196\cos^6{ \left( \theta \right) } + 196\sin^6{\left( \theta \right) } \\ &= 196\,\left\{ \left[ \cos^2{\left( \theta \right) } \right] ^3 + \left[ \sin^2{ \left( \theta \right) } \right] ^3 \right\} \\ &= 196\,\left[ \cos^2{\left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] \left[ \cos^4{\left( \theta \right) } - \cos^2{ \left( \theta \right) } \sin^2{ \left( \theta \right) } + \sin^4{ \left( \theta \right) } \right] \\ &= 196\,\left( 1 \right) \left[ \cos^4{\left( \theta \right) } - \cos^2{ \left( \theta \right) } \sin^2{ \left( \theta \right) } + \sin^4{ \left( \theta \right) } \right] \\ &= 196\,\left\{ \cos^4{ \left( \theta \right) } - \cos^2{ \left( \theta \right) } \left[ 1 - \cos^2{ \left( \theta \right) } \right] + \left[ 1 - \cos^2{ \left( \theta \right) } \right] ^2 \right\} \\ &= 196\,\left[ \cos^4{ \left( \theta \right) } - \cos^2{ \left( \theta \right) } + \cos^4{ \left( \theta \right) } + 1 - 2\cos^2{ \left( \theta \right) } + \cos^4{ \left( \theta \right) } \right] \\ &= 196\,\left[ 3\cos^4{ \left( \theta \right) } - 3\cos^2{ \left( \theta \right) } + 1 \right] \\ &= 588\cos^4{ \left( \theta \right) } - 588\cos^2{ \left( \theta \right) } + 196 \\ &= 3\cdot 14^{\frac{2}{3}}\,\left[ 14\cos^3{ \left( \theta \right) } \right]^{\frac{4}{3}} - 42\cdot 14^{\frac{1}{3}}\,\left[ 14\cos^3{ \left( \theta \right) } \right] ^{\frac{2}{3}} + 196 \\ &= 3 \cdot 14^{\frac{2}{3}}\,x^{\frac{4}{3}} - 42 \cdot 14^{\frac{1}{3}}\,x^{\frac{2}{3}} + 196 \\ y^2 &= 3 \cdot 14^{\frac{2}{3}}\,x^{\frac{4}{3}} - 42\cdot 14^{\frac{1}{3}} \, x^{\frac{2}{3}} - x^2 + 196 \end{align*}\)

Hopefully you can now get \(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}\) (you may have to use Implicit Differentiation) so that you can apply the arclength formula \(\displaystyle \displaystyle \begin{align*} \mathcal{l} = \int_a^b{ \sqrt{1 + \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 } \,\mathrm{d}x } \end{align*}\).
 
The curve defined by:

x(theta)=14cos^3(theta)
y(theta)=14sin^3(theta)

is called an astroid. Find the total arc length of this astroid.

cos2(Θ) = (x/14)2/3

sin2(Θ) = (y/14)2/3

(x/14)2/3 + (y/14)2/3 = 1

dy/dx = (dy/dΘ)/(dx/dΘ)

dy/dx = [-42 * sin(Θ) * cos2(Θ)]/[42 * cos(Θ) * sin2(Θ)] = - cot(Θ)

Now continue.....
 
cos2(Θ) = (x/14)2/3

sin2(Θ) = (y/14)2/3

(x/14)2/3 + (y/14)2/3 = 1

dy/dx = (dy/dΘ)/(dx/dΘ)

dy/dx = [-42 * sin(Θ) * cos2(Θ)]/[42 * cos(Θ) * sin2(Θ)] = - cot(Θ)

Now continue.....

That is definitely an easier way to relate x and y :p

Why not just calculate \(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}\) from the relation that you have found, instead of putting it in terms of \(\displaystyle \displaystyle \begin{align*} \theta \end{align*}\) though?

\(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( \frac{x}{14} \right) ^{\frac{2}{3}} + \left( \frac{y}{14} \right) ^{\frac{2}{3}} \right] &= \frac{ \mathrm{d} }{ \mathrm{d} x } \, \left( 1 \right) \\ 14^{ - \frac{2}{3} } \cdot \frac{2}{3} \, x^{ - \frac{1}{3} } + 14^{ - \frac{2}{3} } \cdot \frac{2}{3} \, y^{ -\frac{1}{3} } \, \frac{ \mathrm{d} y }{ \mathrm{d} x } &= 0 \\ x^{ -\frac{1}{3} } + y^{ -\frac{1}{3} } \, \frac{\mathrm{d} y }{ \mathrm{d} x } &= 0 \\ y^{ - \frac{1}{3} } \, \frac{ \mathrm{d} y }{ \mathrm{d} x } &= - x^{ - \frac{1}{3} } \\ \frac{ \mathrm{d} y }{ \mathrm{d} x} &= -x^{-\frac{1}{3}}\,y^{\frac{1}{3}} \end{align*}\)

and since \(\displaystyle \displaystyle \begin{align*} \left( \frac{x}{14} \right) ^{\frac{2}{3}} + \left( \frac{y}{14} \right) ^{\frac{2}{3}} &= 1 \end{align*}\) that means

\(\displaystyle \displaystyle \begin{align*} x^{\frac{2}{3}} + y^{\frac{2}{3}} &= 14^{\frac{2}{3}} \\ y^{\frac{2}{3}} &= 14^{\frac{2}{3}} - x^{\frac{2}{3}} \\ y^{\frac{1}{3}} &= \pm \left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \end{align*}\)

and thus

\(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= -x^{-\frac{1}{3}}\,\left[ \pm \left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right)^{\frac{1}{2}} \right] \\ &= \mp x^{-\frac{1}{3}}\,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \\ &= \mp \left( x^{-\frac{2}{3}} \right) ^{\frac{1}{2}} \,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \\ &= \mp \left[ x^{-\frac{2}{3}} \,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) \right] ^{\frac{1}{2}} \\ &= \mp \left[ \left( \frac{14}{x} \right) ^{\frac{2}{3}} - 1 \right] ^{\frac{1}{2}} \end{align*}\)
 
That is definitely an easier way to relate x and y :p

Why not just calculate \(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}\) from the relation that you have found, instead of putting it in terms of \(\displaystyle \displaystyle \begin{align*} \theta \end{align*}\) though?

\(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( \frac{x}{14} \right) ^{\frac{2}{3}} + \left( \frac{y}{14} \right) ^{\frac{2}{3}} \right] &= \frac{ \mathrm{d} }{ \mathrm{d} x } \, \left( 1 \right) \\ 14^{ - \frac{2}{3} } \cdot \frac{2}{3} \, x^{ - \frac{1}{3} } + 14^{ - \frac{2}{3} } \cdot \frac{2}{3} \, y^{ -\frac{1}{3} } \, \frac{ \mathrm{d} y }{ \mathrm{d} x } &= 0 \\ x^{ -\frac{1}{3} } + y^{ -\frac{1}{3} } \, \frac{\mathrm{d} y }{ \mathrm{d} x } &= 0 \\ y^{ - \frac{1}{3} } \, \frac{ \mathrm{d} y }{ \mathrm{d} x } &= - x^{ - \frac{1}{3} } \\ \frac{ \mathrm{d} y }{ \mathrm{d} x} &= -x^{-\frac{1}{3}}\,y^{\frac{1}{3}} \end{align*}\)

and since \(\displaystyle \displaystyle \begin{align*} \left( \frac{x}{14} \right) ^{\frac{2}{3}} + \left( \frac{y}{14} \right) ^{\frac{2}{3}} &= 1 \end{align*}\) that means

\(\displaystyle \displaystyle \begin{align*} x^{\frac{2}{3}} + y^{\frac{2}{3}} &= 14^{\frac{2}{3}} \\ y^{\frac{2}{3}} &= 14^{\frac{2}{3}} - x^{\frac{2}{3}} \\ y^{\frac{1}{3}} &= \pm \left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \end{align*}\)

and thus

\(\displaystyle \displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= -x^{-\frac{1}{3}}\,\left[ \pm \left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right)^{\frac{1}{2}} \right] \\ &= \mp x^{-\frac{1}{3}}\,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \\ &= \mp \left( x^{-\frac{2}{3}} \right) ^{\frac{1}{2}} \,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) ^{\frac{1}{2}} \\ &= \mp \left[ x^{-\frac{2}{3}} \,\left( 14^{\frac{2}{3}} - x^{\frac{2}{3}} \right) \right] ^{\frac{1}{2}} \\ &= \mp \left[ \left( \frac{14}{x} \right) ^{\frac{2}{3}} - 1 \right] ^{\frac{1}{2}} \end{align*}\)

You are getting dy/dx to be constant - that turns into a straight line!! ← wrong statement did not see the 'x' in the denominator
 
Last edited by a moderator:
The curve defined by:

x(theta)=14cos^3(theta)
y(theta)=14sin^3(theta)

is called an astroid. Find the total arc length of this astroid.

I think it may be easier to go like this: (abbreviations used to save chalk dust, er... ink?)

x = a cos^3(t) << never mind that stupid '14'.
dx = - 3a cos^2 sin dt
dx^2 = 9a^2 cos^4 sin^2 dt^2
..................
y = a sin^3(t)
dy = - 3a cos sin^2 dt
dy^2 = 9a^2 cos^2 sin^4 dt^2
..................
Sum = 9a^2 cos^2 sin^2(cos^2 + sin^2)
= 9a^2 cos^2 sin^2

arc length = 3a INTEGRAL[0,2PI] cos t sin t dt

etc. etc..
 
Last edited:
Top