Determinant containing entries of the form cos(a_1 - b_1): Prove that its value is zero.

No no, n can NOT be infinity. It can be as large as you like, but not infinity.
What's the difference? why n cannot be infinity ( according to blamocur n value is bounded between 3n<1003≤ n < 100 but I don't understand how did he do that...)
 
hmn somehow I haven't learnt vector multiply with a matrix but I'll try to do it now I may give you an answer 2moro if you don't mind :unsure:
But do you know that if for some vector vv we have Mv=0Mv=0 or vM=0vM=0, and v0v \neq 0 then det(M)=0\det(M) = 0 ?
 
What's the difference? why n cannot be infinity ( according to blamocur n value is bounded between 3n<1003≤ n < 100 but I don't understand how did he do that...)
IF 3n<100\displaystyle 3≤ n < 100, then how can n be infinity?

You are given an nxn matrix. n is a positive integer. Since oo is NOT a positive integer (oo is not even a number!), then n can't be infinity. A non matrix might be a 2x2 matrix, a 125X125 matrix, 10,123,321x10,123,321 matrix, ... But not ooxoo.
 
View attachment 36651
for n = 3 we have two rows are the same which means Det is equal to 0
For n = 3, the matrix is
(cos(a1b1)cos(a2b1)cos(a3b1)cos(a1b2)cos(a2b2)cos(a3b2)cos(a1b3)cos(a2b3)cos(a3b3))\begin{pmatrix} cos(a_1 - b_1) & cos(a_2 - b_1) & cos(a_3 - b_1) \\ cos(a_1 - b_2) & cos(a_2 - b_2) & cos(a_3 - b_2) \\ cos(a_1 - b_3) & cos(a_2 - b_3) & cos(a_3 - b_3) \end{pmatrix}

There will never be duplicate rows.

-Dan
 
For n = 3, the matrix is
(cos(a1b1)cos(a2b1)cos(a3b1)cos(a1b2)cos(a2b2)cos(a3b2)cos(a1b3)cos(a2b3)cos(a3b3))\begin{pmatrix} cos(a_1 - b_1) & cos(a_2 - b_1) & cos(a_3 - b_1) \\ cos(a_1 - b_2) & cos(a_2 - b_2) & cos(a_3 - b_2) \\ cos(a_1 - b_3) & cos(a_2 - b_3) & cos(a_3 - b_3) \end{pmatrix}

There will never be duplicate rows.

-Dan
I don't understand. Why is n = 3 the Determinant will have that form?
 
Claim:
D(sin(b2b3)sin(b3b1)sin(b1b2))=(000)D \left( \begin{array}{l} \sin{(b_2 - b_3)} \\ \sin{(b_3 - b_1)} \\ \sin{(b_1 - b_2)} \end{array} \right) = \left(\begin{array}{c}0 \\ 0 \\ 0\end{array} \right)where D =
(cos(a1b1)cos(a1b2)cos(a1b3)cos(a2b1)cos(a2b2)cos(a2b3)cos(a3b1)cos(a3b2)cos(a3b3))\left( \begin{array}{lll} \cos\left(a_{1}-b_{1}\right) & \cos\left(a_{1}-b_{2}\right) & \cos\left(a_{1}-b_{3}\right) \\ \cos\left(a_{2}-b_{1}\right) & \cos\left(a_{2}-b_{2}\right) & \cos\left(a_{2}-b_{3}\right) \\ \cos\left(a_{3}-b_{1}\right) & \cos\left(a_{3}-b_{2}\right) & \cos\left(a_{3}-b_{3}\right) \end{array} \right)Note that this proves that detD=0\det D = 0 only if v0v \neq 0. But v=0v=0 only when b1=b2=b3  mod  2πb_1 = b_2 = b_3 \;mod\; 2\pi, in which case all columns of DD are identical, which also makes detD=0\det D = 0.

Let
(cos(a1b1)cos(a1b2)cos(a1b3)cos(a2b1)cos(a2b2)cos(a2b3)cos(a3b1)cos(a3b2)cos(a3b3))(sin(b2b3)sin(b3b1)sin(b1b2))=(x1x2x3)\left( \begin{array}{lll} \cos\left(a_{1}-b_{1}\right) & \cos\left(a_{1}-b_{2}\right) & \cos\left(a_{1}-b_{3}\right) \\ \cos\left(a_{2}-b_{1}\right) & \cos\left(a_{2}-b_{2}\right) & \cos\left(a_{2}-b_{3}\right) \\ \cos\left(a_{3}-b_{1}\right) & \cos\left(a_{3}-b_{2}\right) & \cos\left(a_{3}-b_{3}\right) \end{array} \right) \left( \begin{array}{l} \sin{(b_2 - b_3)} \\ \sin{(b_3 - b_1)} \\ \sin{(b_1 - b_2)} \end{array} \right) = \left(\begin{array}{c}x_1 \\ x_2 \\ x_3\end{array} \right) where
xi=cos(aib1)sin(b2b3)+cos(aib2)sin(b3b1)+cos(aib3)sin(b1b2)x_i = \cos\left(a_{i}-b_{1}\right) \sin{(b_2-b_3)} + \cos\left(a_{i}-b_{2}\right) \sin{(b_3-b_1)} + \cos\left(a_{i}-b_{3}\right) \sin{(b_1-b_2)}Using identity     2cosusinv=sin(u+v)sin(uv)    \;\;2\cos u \sin v = \sin (u+v) - \sin (u-v)\;\; we get:
2xi=2x_i =sin(aib1+b2b3)sin(aib1b2+b3)+\sin \left(a_i-b_1 +b_2-b_3 \right)- \sin \left(a_i-b_1 -b_2+b_3 \right) +sin(aib2+b3b1)sin(aib2b3+b1)+\sin \left(a_i- b_2 +b_3-b_1 \right)- \sin \left(a_i-b_2 -b_3+b_1 \right) +sin(aib3+b1b2)sin(aib3b1+b2)\sin \left(a_i-b_3 +b_1-b_2 \right)- \sin \left(a_i-b_3 -b_1 +b_2 \right)==sin(aib1+b2b3)sin(aib3b1+b2)+\sin \left(a_i - b_1 + b_2 - b_3 \right) - \sin \left(a_i - b_3 - b_1 + b_2 \right) +sin(aib2+b3b1)sin(aib1b2+b3)+\sin \left(a_i - b_2 + b_3 - b_1 \right) - \sin \left(a_i - b_1 - b_2 + b_3 \right) +sin(aib3+b1b2)sin(aib2b3+b1)=\sin \left(a_i - b_3 + b_1 - b_2 \right)- \sin \left(a_i - b_2 - b_3 + b_1 \right) =00
 
Top