There exist matrices A, B, C, D: B ≠ D and AB = C = AD
(if that's what you mean).
All you need is that \(\displaystyle \text{A}\boldsymbol{x}=\boldsymbol{c_j}\) for some column \(\displaystyle \boldsymbol{c_j}\) of C, to have non-unique solutions for \(\displaystyle \boldsymbol{x}\).
E.g.
\(\displaystyle \left(\begin{matrix}2&1&3\\0&1&2\\\end{matrix}\right)\left(\begin{matrix}1\\2\\3\\\end{matrix}\right)=\left(\begin{matrix}13\\8\\\end{matrix}\right)\)
\(\displaystyle \left(\begin{matrix}2&1&3\\0&1&2\\\end{matrix}\right)\left(\begin{matrix}2\\6\\1\\\end{matrix}\right)=\left(\begin{matrix}13\\8\\\end{matrix}\right)\)